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Abstract

We study the uncertainty in different two-point correlation function estimators in currently available
galaxy surveys. This is motivated by the active subject of using the BAO feature in the correlation
function as a tool to constrain cosmological parameters, which requires a fine analysis of the statistical
significance.

We discuss how estimators are affected by both the uncertainty on the mean density n̄ and the
integral constraint 1

V 2

∫
V 2 ξ̂(r)d3r = 0 which necessarily causes a bias. We quantify both effects for

currently available galaxy samples using simulated mock SDSS catalogues that follow a lognormal
model, with a ΛCDM correlation function and similar properties as the samples (number density,
mean redshift for the ΛCDM correlation function, survey geometry, mass-luminosity bias). We look
at the variance and bias of the different estimators in order to compare their quality and know if they
are affected by the integral constraint.

Introduction

The correlation function is the most popular tool for analyzing the distribution of galaxies [16].
Any model, like in particular the standard ΛCDM, predicts a certain shape for ξ(r) with a dependence
on the cosmic parameters. Given this dependence we can constrain cosmic parameters when measuring
the correlation function with enough precision.

In this context a very active field is the study of the Baryon Acoustic Oscillations (BAO) which
should imprint the matter correlation function. It is a relic of the sound waves in the early Universe
when baryon and photons where coupled in a relativistic plasma before recombination which caused
the wave propagation to end ([3]). It can be seen as a small peak in the correlation function at a scale
rs corresponding to the comoving distance of the sound horizon.

The main difficulty for detecting and analyzing the BAO’s in large scale structures comes from the
low statistical significance of the signal. It can only be seen on the widest galaxy surveys and has only
been clearly detected in the most extended samples that include Luminous Red Galaxies. In addition
to the statistical uncertainty the signal is affected by observational effects that may not be taken into
account correctly, such as redshift distortions, mass-luminosity bias in the population of galaxies or
wrong redshift to distance conversion.

Our goal here is to focus on the statistical uncertainty in the correlation function estimation, in
particular at the BAO scale . There are two types of statistical uncertainties. The first one comes
from cosmic fluctuations due to limited sample volume, and the other one from the finite number of
galaxies which do not trace exactly the underlying field (i.e. shot noise).

There are various estimators of the correlation function. Their bias expresses the difference between
their expected value and the value of the physical quantity of concern. Estimators are also subject to
variance. In practice there is no way to evaluate the bias of the estimator if it exists, and it must be
considered itself as a source of uncertainty, in addition to the estimator’s variance.
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To study these quantities on the estimators, we use simulations with ΛCDM power spectrum on
the same volume as the data and with the same estimated parameters (density of galaxies, mass-
luminosity bias, mean redshift for the power spectrum). Our simulations assume a lognormal model
for the density field as proposed by [1], which has proven to be valid for a good range of scales.

A sufficient number of simulations provides the bias of the estimator by looking at the difference
between its empiric mean value (i.e. average over all simulations) and the input correlation function.
The variance of the estimators can be estimated by looking at the empiric 1σ fluctuation. This allows
us to compare the different estimator’s qualities and gives an idea of the uncertainty in the estimation.

The plan of the paper is as follows. In 1.1 we present the different estimators of the correlation
function that we consider. We recall some of their properties, in particular their sensibility to the
uncertainty in the mean density n̄ in 1.2 and the bias imposed by the integral constraint in 1.3. In
2 we present the SDSS samples that we want to mimic with our simulations (one LRG sample and
one main sample) and in 3 the lognormal model and our procedure for fitting simulation parameters
to the data. Finally in 4 we perform the analysis of the uncertainty in the ξ estimation. We compare
the quality of the different estimators in 4.1 and look at the effect of the integral constraint in the
simulations in 4.2.

1. 2PCF estimators and bias

1.1. 2PCF estimators
The two-point correlation function is a second order statistic that describes the clustering of a field

or a point process. More precisely ξ(r) measures the excess of probability to find a pair of points in
two volumes dV1 and dV2 at distance r compared to a random distribution.

dP12 = n̄2[1 + ξ(r)]dV1dV2 (1)

where n̄ is the expected density of the distribution.

There are various estimators of the correlation function, most using random catalogues with iden-
tical geometry to measure this excess of probability. Let us define DD(r), RR(r) and DR(r) as the
number of pairs at a distance in [r±dr/2] of respectively data-data, random-random and data-random
points. We also define NDD, NRR and NDR as the total number of corresponding pairs in the (real or
random) catalog.

In this paper we will use 4 different estimators, Peebles-Hauser ([17]), Davis-Peebles ([2]), Hamilton
([10]) and Landy-Szalay ([12]), which have the following expressions:

ξ̂PH(r) =
NRR
NDD

DD(r)
RR(r)

− 1

ξ̂DP (r) =
NDR
NDD

DD(r)
DR(r)

− 1

ξ̂HAM (r) =
NDR

2

NDDNRR

DD(r)RR(r)
[DR(r)]2

− 1

ξ̂LS(r) = 1 +
NRR
NDD

DD(r)
RR(r)

− 2
NRR
NDR

DR(r)
RR(r)

Estimating ξ would be easier knowing the exact number of points in the volume expected from the
distribution. In practice we can only estimate it with the empiric quantities ND and NDD. We show
in section 1.2 that Hamilton and Landy-Szalay only depend on the second order on this uncertainty
in the mean density and thus perform better. Moreover in [12] Landy-Szalay has been proven to be
nearly of minimal variance for a random distribution (i.e. Poisson with no correlation).
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1.2. Uncertainty in the mean density
We show the calculations given in [10] in a simple case where the sample is volume-limited so that

the optimal strategy is to weight all galaxies equally. The empiric density in the catalogue n is a sum
of Dirac functions on the galaxies of the catalogue. If n̄ is the expected density then δ is the relative
fluctuation in the sample:

δ =
n− n̄
n̄

(2)

We write W the indicator function of the sample volume and <> the integration on the volume.
For example <W (x)n(x)> is the integration of the empiric density and thus equals the number of
points in the sample. We introduce the following quantities that have statistical expectations of 0:

δ̄ =
<W (x) δ(x)>
<W (x)>

(3)

Ψ(r) =
<δ(x)W (x)W (y)>r
<W (x)W (y)>r

(4)

ξ̂(r) =
<δ(x)δ(y)W (x)W (y)>r

<W (x)W (y)>r
(5)

where <>r means a double integration in the volume, restricted to x and y separated by a distance
in [r± dr/2]. ξ̂ is an unbiased estimator of the real ξ but we cannot calculate it since we do not know
n̄ and δ.

With short calculations it is possible to express the different estimators with the quantities ξ̂, δ̄
and Ψ ([10]):

ξ̂PH(r) =
ξ̂(r) + 2Ψ(r)− 2δ̄ − δ̄2

[1 + δ̄]2
; (6)

ξ̂DP (r) =
ξ̂(r) + Ψ(r)− δ̄ −Ψ(r) δ̄

[1 + δ̄] [1 + Ψ(r)]
; (7)

ξ̂H(r) =
ξ̂(r)−Ψ(r)2

[1 + Ψ(r)]2
; (8)

ξ̂LS(r) =
ξ̂(r)− 2δ̄Ψ(r) + δ̄2

[1 + δ̄]2
. (9)

These formulas explain the superiority of Hamilton and Landy-Szalay estimators with Ψ and δ̄
terms at the second order in the numerator. Terms in the denominator are not important since they
generate a small relative error, whereas terms in the numerator can generate a high relative error when
their values become non negligible compared to ξ̂. For Hamilton and Landy-Szalay estimators the error
is dominated by the one of ξ̂ and not really affected by Ψ and δ̄ which are linked to the uncertainty in
n̄.

With these formula we see that the estimators are biased in the general case. Indeed δ̄ and Ψ(r)
have expected value 0 and ξ̂(r) has expected value ξ(r) but the terms are combined in multiplications
and division. So we do not get the expected value of the left-hand side by replacing each term by its
expected value in the right-hand side of equations 6, 7, 8, 9.

1.3. The integral constraint
The random catalogue is used to measure an excess of pairs compared to a random distribution.

Equivalently it can be seen as a tool to calculate volumes. Let V be the domain of the sample, if we
take the limit NR →∞:
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RR(r)
NRR

=
# pairs at distance r′ ∈ [r ± dr/2]

# pairs

f(r)
def
= lim

NR→∞

RR(r)
NRR

=
1
|V |2

∫
V

d3x
∫
V

d3y 1|y−x|∈[r±dr/2] (10)

To simplify the text we define I and ÎPH , ÎDP , ÎH , ÎLS (Î when refering to any estimator) as the
values of the integration against f(r) for the real correlation and for the different estimators:

I
def
=

∫ rmax

0

f(r)ξ(r) (11)

ÎPH
def
=

∫ rmax

0

f(r)ξ̂PH(r) (12)

with rmax the maximum distance between 2 points in the volume.

We will show that there is a constraint on the Peebles-Hauser estimator ξ̂PH(r) imposing the
following equality, regardless of the real function ξ(r) that is estimated:

ÎPH = 0 (13)

For a smooth sample and small separation r, the inner integral in equation 10 equals for nearly
all y the volume of the spherical envelope x ∈ Vr with |y − x| ∈ [r ± dr/2]. So for small r we get
f(r) ≈ |Vr||V | = 4πr2dr

|V | and if it was the case for all r the constraint 13 would become:∫
R3
ξ̂(r)d3r = 0. (14)

But when r becomes non negligible compared to the sample size, f(r) 6= |Vr|
|V | , and so the constraint

13 is different from 14 and depends on the sample volume and geometry.
Let us show the relation 13 for the Peebles-Hauser estimator:

ξ̂PH(r) =
NRR
NDD

DD(r)
RR(r)

− 1 ≈ 1
f(r)

1
NDD

DD(r)− 1 (15)

In practice the integration consists in making the sum over all bins ri of the correlation function
estimated up to rmax:

ÎPH =
∑
i

f(ri)ξ̂PH(ri) ≈
∑
i

f(ri)
[

1
f(ri)

1
NDD

DD(ri)− 1
]

=
1

NDD

∑
i

DD(ri)−
∑
i

f(ri) = 1− 1 = 0

It is possible to show that the same constraint Î = 0 should be approximately verified for the other
estimators. For this we need to simplify DR(r) in the limit NR →∞.

1
NDNR

DR(r) =
1
ND

∑
dj

# random points ri s.t. |ri − dj| ∈ [r ± dr/2]
# random points

g(r) = lim
NR→∞

1
NDNR

DR(r) =
1
ND

∑
dj

1
V

∫
V

d3y 1|y−dj|∈[r±dr/2] (16)

This functions g(r) depends on the point positions in the catalogue. We can make another approx-
imation if the size of the correlation is small compared to the volume and if there are enough data
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points. Then data points are approximately uniformly distributed in the volume and we can replace
the mean on data positions by the mean on the volume:

g(r) ≈ 1
V

∫
V

d3x
(

1
V

∫
V

d3y 1|y−x|∈[r±dr/2]

)
= f(r) (17)

Under this approximation all estimators are equivalent and verify the integral constraint. But the
last approximation is not as good as for Peebles-Hauser estimator and the constraint should be less
tight.

We see again that the estimators are biased in the general case. The real correlation function does
need not to verify the constraint, whereas the estimators do verify it and thus their expected value
also.

1.4. Effect of the integral constraint on the bias
To show how the constraint can affect the correlation function estimation we generated realizations

of segment Cox process (see [15]). The field consists in segments of length l randomly distributed in
the volume and points randomly distributed on each segment. The intensity of the point process λ is
equal to the mean length of segments per unit volume LV times the mean number of points per unit
length λl. This process is easy to sample and its correlation function is known analytically ([21]):

ξ(r) =
{

1
2πr2LV

− 1
2πrlLV

for r ≤ l
0 for r ≥ l (18)

It is always positive so the integral constraint forces false negative values for the estimators. We
considered the process with segment length l = 10 (units here are arbitrary), a mean length by unit
volume LV = 0.1 and a mean number of points per unit length λl = 1.8. We calculated the correlation
function estimators on 2000 cubes of sizes a = 10, 2000 cubes of size a = 20 and 512 cubes of size
a = 50 . We plot figure 1 the mean value of the estimators on the samples and the empiric σ value.
To exemplify the presence of the bias we show in the insets the empiric σ divided by

√
N with N

the number of realizations which gives the uncertainty in the empiric mean. A difference between the
mean value and the real ξ much larger than σ√

N
means a bias is present in the estimators.

We observe that a bias is present for all estimators and for all sizes of cubes. As expected it becomes
smaller when the sample size increases just like the variance decreases. For Landy-Szalay and Hamilton
estimators the bias also decreases faster than the estimators’ variances. The bias approximately equals
half of the standard deviation σ in a large region for a = 10 and a = 20 whereas it is very small
compared to the variance for a = 50. Biases are similar for the different estimators for a = 10 and
a = 20 although Landy-Szalay and Hamilton have smaller variances than Peebles-Hauser and Davis-
Peebles.

The effect of the bias is to force negative values at intermediate scales, so that the weighted sum in
Î approaches 0. Figure 2 shows the weighted estimators f(ri)ξ̂(ri) and how the integral cancels for the
estimators and not for the real ξ. The effect is clear for a = 20 and a = 10 (not shown because results
for a = 10 and for a = 20 have similar trends). For a = 50 however the bias comes not entirely from
the integral constraint as the weighted function takes alternatively negative and positive values. So
the small bias that is still present could come from other effects (e.g. finite number of random points).
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Figure 1: Mean and 1σ for the different estimators on 2000 Cox realizations for cubes size a = 20 (left panel) and
512 realizations for a = 50 (right panel). We plot the analytic function (black), Peebles-Hauser (purple), Davis-Peebles
(light blue), Hamilton (green), Landy-Szalay (red). In inset we zoom over the biased region with error bars σ√

N
which

is approximately the standard deviation of the mean on N realizations.

Figure 2: Weighted estimators f(ri)ξ̂(ri) for a = 20 (left panel) and a = 50 (right panel). We plot it for the analytic
function (black), Peebles-Hauser (purple), Davis-Peebles (light blue), Hamilton (green), Landy-Szalay (red).

We show table 1 the value of I for the real ξ and Î for the estimators’ means. The constraint
is close to be verified (Î ≈ 0), especially for Peebles-Hauser, even when the real ξ does not verify it
(I � Î).

The weight function f sums to 1 (see equation 10) so a the difference in
∑
i f(ri)ξ(ri) and∑

i f(ri)ξ̂(ri) (I and Î) implies in average a similar difference between ξ and ξ̂. Negative bias may
compensate positive bias in the integral, so it can be an underestimation.

For the Landy-Szalay and Hamilton estimators the constraint gets weaker between a = 20 and
a = 50. These values of a correspond to values of I for the real ξ of approximately 0.01 and 0.001. A
quantity which is more intuitive than I is the normalized mass variance inside a sample V :

σ2(V ) =
Var [M(V )]
E [M(V )]2

(19)

σ(V ) represents the fluctuation of mass in the sample. It can be shown that I is equal to σ2(V ) up
to the shot noise variance (see [9]), which can be usually neglected. Thus we can express conditions
for the constraint to be weak or negligible in terms of the σ(V ) value. The cubic samples with a = 20
and a = 50 correspond respectively to σ(V ) ≈ 0.1 and σ(V ) ≈ 0.03. So the constraint still affects the
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estimation for a 10% homogeneity level and starts to be weak for a 3% homogeneity level for this Cox
process.

I σ(V ) ÎPH ÎDP ÎH ÎLS
a = 10 0.059 0.24 2.87× 10−5 9.24× 10−5 7.16× 10−3 0.0125
a = 20 9.6× 10−3 0.098 1.88× 10−5 −5.54× 10−4 2.23× 10−4 1.47× 10−3

a = 50 7.8× 10−4 0.027 3.8× 10−6 −7.04× 10−5 −1.86× 10−5 1.02× 10−4

Table 1: Values of I and Î for different estimators on cube sizes a = 10, a = 20 and a = 50

2. Samples and simulations

2.1. SDSS galaxy samples
We want to test the reliability of the correlation function estimation on current galaxy surveys. The

largest survey up to date is the Sloan Digital Sky Survey (SDSS) with a final version in Data Release
7 (DR7,[6]). It contains a magnitude-limited sample of galaxies (main) and a nearly-volume-limited
sample of luminous red galaxies (LRG).

To create volume-limited samples of the main we used the catalogue available in Mangle’s webpage1.
This catalogue is based on the New York University Value-Added Galaxy Catalog ([8]). It contains
r-band absolute magnitudes (Mr) for each galaxy that are already K-corrected and corrected for
evolution at a fiducial redshift of z = 0.1 following [7].

We also used a volume-limited sample of LRGs drawn directly from SDSS-DR7. LRGs are early-
type galaxies selected using different luminosity and colour cuts [4], and extending to higher redshift.
We computed the K-corrected g-band absolute magnitudes (Mg), and corrected for evolution at a
fiducial redshift of z = 0.3, following the method described in [4].

In both cases, we obtained volume-limited samples by dividing the survey in different galaxy popu-
lations (according to the absolute magnitude in each case) and then cutting the sample at a minimum
and a maximum redshift so that the density remains approximately constant. The selected volume-
limited samples from the main catalogue are similar to those used by [5], while the LRG one is the
same as used by [14].

Finally we restricted the samples to a region of the sky that is nearly complete except for small
areas masked by bright stars. For this we cut the sample in the survey coordinate system (η, λ) with
limits −31.25˚ < η < 28.75˚ and −54.8˚ < λ < 51.8˚. Because of this the samples are smaller and
we have less statistics for correlation function estimation, but it is simpler for obtaining simulations in
the same volume.

We give in Table 2 the magnitude and redshift limits used to construct the four volume-limited
samples. We also give their total number of galaxies (Ng), volume (V ) and mean density (n̄).

In this paper only serve as reference and are used to adjust our simulation parameters.

Name Magnitude Limits Redshift Limits Distance Limits Ng V n̄
(h−1Mpc) (h−1 Mpc)3 (h−1 Mpc)−3

main1 Mr < −20 0.038 < z < 0.119 112.94 < d < 346.99 126733 22.571× 106 5.615× 10−3

main2 Mr < −21 0.059 < z < 0.168 174.50 < d < 484.06 66327 60.492× 106 1.096× 10−3

main3 Mr < −21.5 0.071 < z < 0.205 209.40 < d < 585.27 29576 107.041× 106 2.763× 10−4

LRG −23.544 < Mg < −21.644 0.14 < z < 0.42 410 < d < 1140 34347 790.4× 106 4.345× 10−5

Table 2: Characteristics of the SDSS samples

2.2. Simulations
2.2.1. The lognormal model

The usual paradigm for the distribution of galaxies ng is the Cox process, i.e. a Poisson process
with an intensity given by a continuous field ρg(x), which itself is a statistical process. Knowing ρg(x)

1http://space.mit.edu/∼molly/mangle/
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the number of galaxies in a volume dV around x is a Poisson variable with intensity ρg(x)dV . It can
be verified that the correlation function of the point process is the same as the underlying continuous
process ρg plus a weighted Dirac function 1

n̄δ0 due to the discreteness.
The process ρg is linked to the underlying matter density field ρm since galaxies form in matter

over-densities, but is not supposed to be identical. Indeed it has been observed that correlation is
higher in the galaxy distribution than in the matter field, and also depends on galaxy population.
The ratio of the two is the square of the mass-luminosity bias b. Note that the term bias here has a
different meaning than when we speak about the bias of estimators. The mass-luminosity bias quantifies
how fluctuations are amplified in the distribution of galaxies whereas the bias of an estimator is the
difference between its expected value and the quantity to estimate.

In general b should depend on the scale but here we will simplify and consider it constant:

ξg(r) = b2 ξm(r). (20)

We will consider a galaxy field ρg following a lognormal model as proposed in [1]. A lognormal field
Y with an expected value of 1 is obtained from a gaussian field X by:

Y = eX−
σ2
X
2 . (21)

This model has been successfully applied to density field reconstruction in [11], where it enters as
a prior model for the matter field. The lognormal model is quite simple and has other interesting
properties (see [1]):

• It describes well the distribution of galaxies as found by Hubble (1934) and recently in [11] when
the galaxy field is smoothed on scales between 10 and 30 Mpc

• The positivity of the field is ensured unlike in a gaussian model

• It is completely described by its correlation function as the gaussian field (and numerous quan-
tities can be calculated as easily, i.e. statistics of the peaks, genus)

• It is arbitrarily close to a gaussian field at early times where σ ≈ 0

• It is the solution of the equations of evolution of ρ when supposing that the initial density field
peculiar velocities are gaussian

2.2.2. Adjusting simulation parameters
We adopt for our simulations a ΛCDM power spectrum PΛCDM given by the iCosmo software ([19])

with the WMAP7 cosmological parameters. We decided to reproduce the main2 sample, given in
section 2.1, which is an average main sample, and the LRG sample. We take the power spectrum at
the mean redshift for each sample, i.e. at redshift z = 0.1 for the main2 sample, and at z = 0.3 for the
LRG sample.

The simulations give the continuous field ρg on a discrete grid with a size 700 by 700 by 700 with
a physical size of (1200 h−1 Mpc)3 for the main2 sample and (1600 h−1 Mpc)3 for the LRG sample,
i.e. with elementary cells respectively of 1.71 h−1 Mpc and 2.29 h−1 Mpc. We then place in each cell
a number of galaxies which is a Poisson realization of intensity ρg at this cell. Overall this will have
the effect of smoothing the correlation function approximately with the cell size.

We choose a mean density of points in the volume that gives on average the same number of points
as in the SDSS samples.

A last step is to choose the mass-luminosity bias b between the samples and the ΛCDM matter
correlation function. For estimating this factor we fit the ΛCDM correlation function to the one
estimated on the data ξ̂:

b2 ξΛCDM ≈ ξ̂ (22)

By this method we find a bias for the main samples (the variation of b is rather small between the
different main samples) and for the LRG sample compared to ΛCDM at redshift z = 0.1 and z = 0.3.
We find respectively b = 1.5 and b = 2.5 : as usually observed, the bias increases with luminosity
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([13],[22]). The bias obtained for the LRG is a bit larger, than the one usually found for LRG, b ≈ 2
(e.g. in [20]). This probably comes from the fact that we selected only brightest galaxies of the LRG
population.

3. Uncertainty in estimating ξ

3.1. Bias and variance of the estimators
For each sample (main2 and LRG) we use 200 lognormal simulations with the parameters described

before and compute the different estimators for each realization. Each time we use respectively 100
000 and 150 000 random points which is enough so that the corresponding error is small. Each time a
different random catalogue so when we take the mean over all realizations for the analysis of the bias,
the effect of finite number of random points is completely negligible.

Yet on individual realizations the fluctuation due to finite number of random points can increase
a little bit the variance of the estimators. For a given contribution to the variance the number of
required points is related to the volume size and geometry, and to the size of the bins for estimating ξ
(in all our tests we took bin sizes of 10). More precisely the condition is that 1

NRR
RR(r) approximates

with a given precision 1
V 2

∫
V
d3x

∫
V
d3y 1|y−x|∈[r±dr/2].

We show in figure 3 the estimator’s means compared to the theoretical ΛCDM correlation function.
For clarity the curves have been translated by ±1 h−1Mpc. A bias can be seen for the estimation
in the main sample as the mean differs by approximately half of the variance from the true value for
r > 90 h−1Mpc. However on the LRG, sample estimator’s means are nearly indistinguishable from
the theoretical values.

This also validates our simulation process which gives an output correlation function fitting very
well the one in input. There is a small difference at the scale of the BAO (in addition to the bias) that
we attribute to the smoothing introduced by grid discretization described section 2.2.2. The BAO is
a local maximum so the function decreases after smoothing.

Concerning the estimator’s variances there are much smaller on the LRG sample than on the
main since the volume is bigger and the Poisson fluctuations remain small for a number of galaxies
ND ≈ 34000.

We also see that Hamilton and Landy-Szalay estimators are much better than the 2 others in terms
of variance. This agrees with previous studies ([18]) showing a superiority of these estimators. It also
agrees with the analysis in [12] considering a Poisson process with no correlation. In the latter case
Landy-Szalay and Hamilton estimators have second order variances decay in 1

n2 with n the number
of data points (i.e. a 1

|V |2 decay with |V | the volume size) whereas Peebles-Hauser and Davis-Peebles
have first order decay in 1

n .

Figure 3: Left Panel: Different estimators’ means and 1σ for 200 main2 realizations, Peebles-Hauser (purple), Davis-
Peebles (light blue), Hamilton (green), Landy-Szalay (red) and ΛCDM at z = 0.1 with b = 1.5 (black). Right Panel:
Same for the LRG sample except ΛCDM at z = 0.3 with b = 2.5.
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3.2. Effect of the integral constraint
We are interested here in the influence of the constraint studied in section 1.3. The constraint

writes
∫ rmax

0
f(r)ξ̂(r) = 0 with f(r) ≈ 4πr2dr

|V | for small r. Assuming
∫∞

0
r2 ξ(r) dr is finite the value of∫ rmax

0
f(r) ξ(r)dr vanishes as 1

|V | at large volumes. In usual ΛCDM models the power spectrum verifies
P (0) = 0 and thus the correlation function verifies

∫∞
0

r2 ξ(r)dr = 0 which makes the constraint even
more easy to be satisfied.

Table 3 shows the value of the constrained integral for theoretical ξΛCDM and for the measured
ξ̂, respectively I and Î. For the main2 sample Î is significantly closer to 0 than I meaning that the
constraint has an effect on the estimation. The effect is negligible for the LRG sample.

The value of I gives the mean bias of ξ̂ caused by the integral constraint: it is of order 10−3 for
the main2 sample and of order 10−4 for the LRG sample. Comparing to the values of ξ at the scales
of interest (i.e. usually between 50 and 150h−1Mpc) the bias is significant for the main2 sample but
it is negligible for the LRG sample.

We can also make a parallel with the Cox model of section 1.3 where the effect of the constraint
becomes very small for σ(V ) ≈ 0.03. The main2 sample has the same value σ(V ) ≈ 0.03 but the effect
is still important. In the LRG sample the value is 3 times smaller, σ(V ) ≈ 0.01 so it is not surprising
that the effect is negligible.

I σ(V ) ÎPH ÎDP ÎH ÎLS
main2 8.85× 10−4 ≈ 0.03 5.93× 10−6 −1.65× 10−4 −1.42× 10−4 4.95× 10−5

LRG 1.10× 10−4 ≈ 0.01 1.05× 10−4 8.16× 10−5 6.61× 10−5 7.41× 10−5

Table 3: Values of I and Î for different estimators
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Conclusion

We have studied statistical properties, in particular uncertainties, of the correlation function esti-
mators.

For this we simulated lognormal mock galaxy catalogues; the different parameters of the simulations
are adjusted to those of the SDSS samples: mean redshift of the ΛCDM input power spectrum, density
of galaxies in the sample, mass-luminosity factor bias. Using enough realizations, we quantified the
uncertainty in ξ coming from both estimators’ variances and biases.

We compared different estimators of the correlation function, in particular regarding their sensibility
to the fluctuation in the number of galaxies n (i.e. the uncertainty in the mean density): Peebles-Hauser
and Davis-Peebles depend at first order on that fluctuation; whereas Hamilton and Landy-Szalay have
a second order dependence. As a consequence the variances of the first two estimators have only a
first order decay in the volume size whereas the two latter estimators have a second order decay. We
confirmed with the simulations that Hamilton and Landy-Szalay have much smaller variances.

We evaluated the effect of the integral constraint: it can affect the estimation for small volumes,
but this effect is negligible when the real ξ itself is close to to verify the constraint. For the Cox
process the effect becomes very small when fluctuations in the volume are less than 3% (σ(V ) < 0.03).
This homogeneity level is achieved for one of the main galaxy sample. Yet for this sample the integral
constraint still affects the estimation with a bias in ξ̂(r) of approximately 0.5σ for r > 90 h−1Mpc.
For the LRG sample with σ(V ) ≈ 0.01, the estimators are unbiased and the estimation of ξ is reliable
up to variance.
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